## SPRING 2024 MATH 590: EXAM I SOLUTIONS

Name:

Throughout $V$ will denote a vector space over $F=\mathbb{R}$ or $\mathbb{C}$.
(I) True-False. Write true or false next to each of the statements below. (3 points each)
(a) $\mathbb{R}^{17}$ can be spanned by 19 vectors. True. One can always add redundant vectors to any spanning set.
(b) If $V$ is a finite dimensional vector space, then $V$ has only finitely many subspaces. False. There are infinitely many distinct lines through the origin in $\mathbb{R}^{2}$.
(c) Ten linearly independent vectors in $\mathbb{R}^{10}$ form a basis for $\mathbb{R}^{10}$. True. Discussed many times in class.
(d) Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is a linear transformation. If $\operatorname{ker}(T)=0$, then $\operatorname{im}(T)=\mathbb{R}^{4}$. False. By the Rank plus Nullity theorem, $\operatorname{im}(T)$ has dimension three, so it cannot equal $\mathbb{R}^{4}$.
(e) Suppose $V=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}=\overrightarrow{0}$, with each $a_{i} \in F$ and $a_{1} \neq 0$. Then $V=\operatorname{Span}\left\{v_{2}, v_{3}, v_{4}\right\}$. True, since we can solve for $v_{1}$ in terms of $v_{2}, v_{3}, v_{3}$.
(II) State the indicated definition, proposition or theorem. (5 points each)
(a) State the Rank plus Nullity Theorem and be sure define all terms used in your statement. (10 points)

Solution. Let $T: V \rightarrow W$ be a linear transformation, with $V$ finite dimensional over $F$. Then

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{im}(T))
$$

$\operatorname{dim}(V)$ is the number of elements in any basis for $V$.
$\operatorname{ker}(T)=$ kernel of $T=\{v \in V \mid T(v)=0\}$.
$\operatorname{im}(T)=$ the image of $\mathrm{T}=\{w \in W \mid w=T(v)$, for soem $v \in V\}$.
(b) Let $T: V \rightarrow W$ be a linear transformation, $\alpha=\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for $V$ and $\beta=\left\{w_{1}, \ldots, w_{m}\right\}$ a basis for $W$. Define (and not give a formula for) $[T(v)]_{\beta}$. (5 points)

Solution. If $T(v)=b_{1} w_{1}+\cdots+b_{m} w_{m}$, then $[T(v)]_{\beta}=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right) \in F^{m}$.
(III) Short Answer. (15 points each)
(a) Suppose $v_{1}=\left(\begin{array}{c}1 \\ 2 \\ 0 \\ -2\end{array}\right) v_{2}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right), v_{3}=\left(\begin{array}{c}0 \\ -4 \\ 0 \\ 5\end{array}\right)$. Write the matrix equation you would solve to determine if these vectors are linearly independent and explain what a possible solution to this equation means. Do not work out the details of solving the matrix equation.

Solution. One considers the matrix equation

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
2 & 1 & -4 \\
0 & 1 & 0 \\
-2 & 1 & 5
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

If the only solution is $x=y=z=w=0$, then the given vectors are linearly independent. On the other hand, if $x=a, y=b, z=c$ is a non-zero solution, then $a v_{1}+b v_{2}+c v_{3}=\overrightarrow{0}$ is a dependence relation on $v_{1}, v_{2}, v_{3}$.
(b) Let $V=\mathrm{M}_{2 \times 2}(\mathbb{R})$ and $T: V \rightarrow \mathbb{R}$ be the linear transformation $T(A)=\operatorname{trace}(A)$. Verify the Rank plus Nullity theorem.

Solution. We compute the kernel and image of $T$. Suppose $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is in the kernel of $T$. Then $a+d=0$, so $d=-a$. Thus, $A=\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)=a \cdot\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)+b \cdot\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right)+c \cdot\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Note that the matrices $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ belong to the kernel of $T$, so they span the kernel of $T$. Moreover, given a linear combination $r \cdot\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)+s \cdot\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+t \cdot\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, we have $\left(\begin{array}{cc}r & s \\ t & -r\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, so $r=s=t=0$, showing that the matrices $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ are linearly independent, and thus form a basis for the kernel of $T$. Therefore, $\operatorname{dim}(\operatorname{ker}(T))=3$. Note that for any $r \in \mathbb{R}, T\left(\begin{array}{ll}r & 0 \\ 0 & 0\end{array}\right)=r$, so that $T$ is an onto transformation. Thus, $\operatorname{im}(T)=\mathbb{R}$, so that $\operatorname{dim}(\operatorname{im}(T))=1$. Therefore, we have

$$
4=\operatorname{dim}(V)=3+1=\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{im}(T))
$$

confirming the Rank plus Nullity theorem.

Comment. Finding the basis for the kernel in this problem is very similar to Example 4 in Lecture 7, where we find a basis for all matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ satisfying $3 a+2 d=0$.
(c) Suppose $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and consider $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(v)=A v$, for all $v \in \mathbb{R}^{2}$. Let $\alpha$ denote the standard basis for $\mathbb{R}^{2}$ and set $\beta:=\left\{\binom{2}{1},\binom{1}{1}\right\}$. Explain why $\beta$ is a basis for $\mathbb{R}^{2}$, then state the change of basis formula as it applies here, and use it to calculate $[T]_{\beta}^{\beta}$. Note: Do not calculate $[T]_{\beta}^{\beta}$ directly.

Solution. First note that $\beta$ is a basis for $\mathbb{R}^{2}$, since $\operatorname{det}\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)=1 \neq 0$. The change of basis formula states that $[T]_{\beta}^{\beta}=[I]_{\alpha}^{\beta} \cdot[T]_{\alpha}^{\alpha} \cdot[I]_{\beta}^{\alpha}$.
As seen many times in class, we have $[T]_{\alpha}^{\alpha}=A$. Moreover, $[I]_{\beta}^{\alpha}=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$, since $\alpha$ is the standard basis for $\mathbb{R}^{2}$. Since $[I]_{\alpha}^{\beta}=\left([I]_{\beta}^{\alpha}\right)^{-1}$, we have $[I]_{\alpha}^{\beta}=\frac{1}{1} \cdot\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right)$. Thus,

$$
[T]_{\beta}^{\beta}=[I]_{\alpha}^{\beta} \cdot[T]_{\alpha}^{\alpha} \cdot[I]_{\beta}^{\alpha}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right) \cdot\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right) .
$$

Comment. This almost the same type of problem as Practice Problem 3, except, here, you are not required to calculate $[T]_{\beta}^{\beta}$ in two different ways.
(IV) Proof problem. (25 points) For the linear transformations $T: V \rightarrow W$ and $S: W \rightarrow U$, and bases $\alpha \subseteq V, \beta \subseteq W, \gamma \subseteq U$, state and prove the formula relating the matrices of $S$ and $T$ to the matrix of $S T$ with respect to the given bases.
Solution. We are required to prove that $[S T]_{\alpha}^{\gamma}=[S]_{\beta}^{\gamma} \cdot[T]_{\alpha}^{\beta}$.
We take $\alpha:=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\beta:=\left\{w_{1}, \ldots, w_{m}\right\}$, and set $[T]_{\alpha}^{\beta}:=A=\left(a_{i j}\right)$ and $[S]_{\beta}^{\gamma}:=B=\left(b_{i j}\right)$. Let $B_{1}, \ldots, B_{m}$ denote the columns of $B$.
On the one hand, the $j$ th column of $[S T]_{\alpha}^{\gamma}$ is $\left[S T\left(v_{j}\right)\right]_{\gamma}$. On the other hand,

$$
\begin{aligned}
{\left[S T\left(v_{j}\right)\right]_{\gamma} } & =\left[S\left(a_{1 j} w_{1}+\cdots+a_{m j} w_{m}\right)\right]_{\gamma} \\
& =\left[a_{1 j} S\left(w_{1}\right)+\cdots+a_{m j} S\left(w_{m}\right)\right]_{\gamma} \\
& =a_{1 j}\left[S\left(w_{1 j}\right)\right]_{\gamma}+\cdots+a_{m j}\left[S\left(w_{m}\right)\right]_{\gamma} \\
& =a_{1 j} B_{1}+\cdots+a_{m j} B_{m} \\
& =B \cdot\left(\begin{array}{c}
a_{1 j} \\
\vdots \\
a_{m j}
\end{array}\right),
\end{aligned}
$$

which is the $j$ th column of $B \cdot A$, i.e., the $j$ th column of $[S]_{\beta}^{\gamma} \cdot[T]_{\alpha}^{\beta}$. Thus the matrices $[S T]_{\alpha}^{\gamma}$ and $[S]_{\beta}^{\gamma} \cdot[T]_{\alpha}^{\beta}$ have the same columns and are therefore equal.

