SPRING 2024 MATH 590: EXAM I SOLUTIONS

Name:

Throughout V will denote a vector space over $F = \mathbb{R}$ or \mathbb{C} .

- (I) True-False. Write true or false next to each of the statements below. (3 points each)
 - (a) \mathbb{R}^{17} can be spanned by 19 vectors. True. One can always add redundant vectors to any spanning set.
 - (b) If V is a finite dimensional vector space, then V has only finitely many subspaces. False. There are infinitely many distinct lines through the origin in \mathbb{R}^2 .
 - (c) Ten linearly independent vectors in \mathbb{R}^{10} form a basis for \mathbb{R}^{10} . True. Discussed many times in class.
 - (d) Suppose $T : \mathbb{R}^3 \to \mathbb{R}^4$ is a linear transformation. If $\ker(T) = 0$, then $\operatorname{im}(T) = \mathbb{R}^4$. False. By the Rank plus Nullity theorem, $\operatorname{im}(T)$ has dimension three, so it cannot equal \mathbb{R}^4 .
 - (e) Suppose $V = \text{Span}\{v_1, v_2, v_3, v_4\}$ and $a_1v_1 + a_2v_2 + a_3v_3 + a_4v_4 = \vec{0}$, with each $a_i \in F$ and $a_1 \neq 0$. Then $V = \text{Span}\{v_2, v_3, v_4\}$. True, since we can solve for v_1 in terms of v_2, v_3, v_3 .

(II) State the indicated definition, proposition or theorem. (5 points each)

(a) State the Rank plus Nullity Theorem and be sure **define all terms used in your statement**. (10 points)

Solution. Let $T: V \to W$ be a linear transformation, with V finite dimensional over F. Then $\dim(V) = \dim(\ker(T)) + \dim(\operatorname{im}(T)).$

dim(V) is the number of elements in any basis for V. ker(T) = kernel of $T = \{v \in V \mid T(v) = 0\}$. im(T) = the image of T= $\{w \in W \mid w = T(v), \text{ for soem } v \in V\}$.

(b) Let $T: V \to W$ be a linear transformation, $\alpha = \{v_1, \ldots, v_n\}$ a basis for V and $\beta = \{w_1, \ldots, w_m\}$ a basis for W. Define (and not give a formula for) $[T(v)]_{\beta}$. (5 points)

Solution. If $T(v) = b_1 w_1 + \dots + b_m w_m$, then $[T(v)]_{\beta} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in F^m$.

(III) Short Answer. (15 points each)

(a) Suppose $v_1 = \begin{pmatrix} 1\\ 2\\ 0\\ -2 \end{pmatrix} v_2 = \begin{pmatrix} 1\\ 1\\ 1\\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 0\\ -4\\ 0\\ 5 \end{pmatrix}$. Write the matrix equation you would solve to determine

if these vectors are linearly independent and **explain what a possible solution to this equation means**. Do not work out the details of solving the matrix equation.

Solution. One considers the matrix equation

$$\begin{pmatrix} 1 & 1 & 0\\ 2 & 1 & -4\\ 0 & 1 & 0\\ -2 & 1 & 5 \end{pmatrix} \cdot \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 0\\ 0\\ 0\\ 0 \\ 0 \end{pmatrix}.$$

If the only solution is x = y = z = w = 0, then the given vectors are linearly independent. On the other hand, if x = a, y = b, z = c is a non-zero solution, then $av_1 + bv_2 + cv_3 = \vec{0}$ is a dependence relation on v_1, v_2, v_3 .

(b) Let $V = M_{2 \times 2}(\mathbb{R})$ and $T: V \to \mathbb{R}$ be the linear transformation T(A) = trace(A). Verify the Rank plus Nullity theorem.

Solution. We compute the kernel and image of T. Suppose $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is in the kernel of T. Then a + d = 0, so d = -a. Thus, $A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} = a \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + b \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Note that the matrices $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ belong to the kernel of T, so they span the kernel of T. Moreover, given a linear combination $r \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + s \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + t \cdot \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, we have $\begin{pmatrix} r & s \\ t & -r \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, so r = s = t = 0, showing that the matrices $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ are linearly independent, and thus form a basis for the kernel of T. Therefore, dim(ker(T)) = 3. Note that for any $r \in \mathbb{R}$, $T\begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} = r$, so that T is an onto transformation. Thus, im(T) = \mathbb{R} , so that dim(im(T)) = 1. Therefore, we have $4 = \dim(V) = 3 + 1 = \dim(\ker(T)) + \dim(\operatorname{im}(T))$,

confirming the Rank plus Nullity theorem.

Comment. Finding the basis for the kernel in this problem is very similar to Example 4 in Lecture 7, where we find a basis for all matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfying 3a + 2d = 0.

(c) Suppose $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and consider $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by T(v) = Av, for all $v \in \mathbb{R}^2$. Let α denote the standard basis for \mathbb{R}^2 and set $\beta := \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$. Explain why β is a basis for \mathbb{R}^2 , then state the change of basis formula as it applies here, and use it to calculate $[T]^{\beta}_{\beta}$. Note: Do not calculate $[T]^{\beta}_{\beta}$ directly.

Solution. First note that β is a basis for \mathbb{R}^2 , since det $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = 1 \neq 0$. The change of basis formula states that $[T]^{\beta}_{\beta} = [I]^{\beta}_{\alpha} \cdot [T]^{\alpha}_{\alpha} \cdot [I]^{\alpha}_{\beta}$.

As seen many times in class, we have $[T]^{\alpha}_{\alpha} = A$. Moreover, $[I]^{\alpha}_{\beta} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, since α is the standard basis for \mathbb{R}^2 . Since $[I]^{\beta}_{\alpha} = ([I]^{\alpha}_{\beta})^{-1}$, we have $[I]^{\beta}_{\alpha} = \frac{1}{1} \cdot \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$. Thus, $[T]^{\beta}_{\beta} = [I]^{\beta}_{\alpha} \cdot [T]^{\alpha}_{\alpha} \cdot [I]^{\alpha}_{\beta} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}$.

Comment. This almost the same type of problem as Practice Problem 3, except, here, you are not required to calculate $[T]^{\beta}_{\beta}$ in two different ways.

(IV) Proof problem. (25 points) For the linear transformations $T: V \to W$ and $S: W \to U$, and bases $\alpha \subseteq V, \beta \subseteq W, \gamma \subseteq U$, state and prove the formula relating the matrices of S and T to the matrix of ST with respect to the given bases.

Solution. We are required to prove that $[ST]^{\gamma}_{\alpha} = [S]^{\gamma}_{\beta} \cdot [T]^{\beta}_{\alpha}$.

We take $\alpha := \{v_1, \ldots, v_n\}$ and $\beta := \{w_1, \ldots, w_m\}$, and set $[T]^{\beta}_{\alpha} := A = (a_{ij})$ and $[S]^{\gamma}_{\beta} := B = (b_{ij})$. Let B_1, \ldots, B_m denote the columns of B.

On the one hand, the *j*th column of $[ST]^{\gamma}_{\alpha}$ is $[ST(v_j)]_{\gamma}$. On the other hand,

$$[ST(v_j)]_{\gamma} = [S(a_{1j}w_1 + \dots + a_{mj}w_m)]_{\gamma}$$

= $[a_{1j}S(w_1) + \dots + a_{mj}S(w_m)]_{\gamma}$
= $a_{1j}[S(w_{1j})]_{\gamma} + \dots + a_{mj}[S(w_m)]_{\gamma}$
= $a_{1j}B_1 + \dots + a_{mj}B_m$
= $B \cdot \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix}$,

which is the *j*th column of $B \cdot A$, i.e., the *j*th column of $[S]^{\gamma}_{\beta} \cdot [T]^{\beta}_{\alpha}$. Thus the matrices $[ST]^{\gamma}_{\alpha}$ and $[S]^{\gamma}_{\beta} \cdot [T]^{\beta}_{\alpha}$ have the same columns and are therefore equal.